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The Eesona.ncesi below the inelastic (n=2) threshold of elec-

tron-hydrogen scattering are examined by the projection operator
! technique of Feshbach. This technique converts the problem to an
w problem for a projected Hamiltonian in which the auto-
ionization levels of H become trum The number of levels
of this problem is found to be infinite and cluster at the n=2
level of H. The relative spacinmgs of the levels are identical to

the resonances in e-H scattering as derived by Gailitis and Damburg.
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I INTRODUCTION
Recently, O'Malley and Gfeltma.nl have utilized the projec-
tion operator technique of Feshbachz, as applied to the atomic case

by Hahn, O'Malley and Sp:mch3

s, to calculate the compound auto-
ionization states of H below the n=2 excitation threshold for e-H
scattering. The point of the projection operator, Q, is that it
projects out (removes ) the ground state of hydrogen from the total
wave function, and therefore gives rise only to asymptotically vanish-
ing terms even for a wave function that would otherwise be capsble of
describing e-H elastic scattering. Thus one can formulate an

ordinary eigenvalue problem for the Schridinger equation with a

projected wave function @ Y':

/—/[C;/ WBZEM ((PZP) (1.1)

and, following Fanou, 0'Malley and Geltman have shown that at

energies EM close to the eigenvalues 6,% of the above problemn,

E,.= &

M

t AL, (L.2)

the phase shift associated with the scattering problem, described
by ‘LLJ , undergoes an increase of approximately 7T radians cor-
responding to resonances in the elastic scattering.

Although an explicit formula for A, . WES givenl, it involves
coupling to the continuum part of “5[./ . Thus the 0'Malley-Geltman
calculations were confined to 5 ~, below the inelastic (2s)
threshold for H (e-H scattering) and He (e-He' scattering).

The neglect of £\, would indeed be justifiable as agreement
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5,6,7

with other scattering calculations and experiments8 showedl.
However, there is a special circumstance in the case of elastic
scattering just below the 2s threshold which makes for an infinite
nunber of resonances which cluster on the 2s threshold. This
remarkable result was deduced by Gailitis and Damburg9 on the
basis of close-coupling scattering calculations above threshold
which were then extrapolated below threshold. The physical basis
for this -phencomenon derives from the very long range nature of
the potential ( v~ ) which in turn stems from the degeneracy of the
2s and 2p levels of hydrogen (and it is only in this approximation
that the infinity of resonances applies). On the other hand the
actual calculations of O0'Malley and (}(iltmanl yielded only two
resonances in each channel, which,";;lthough it was in accord with
previous predictions of two resona.nces6 » leaves open the question of
whether the higher resonances are present below threshold in the
actual spectrum of QY or whether they appear above the 2s threshold
and are only brought below threshold by the uncalculated A "

The formal definition of the projectien operator Q as it
applies to this problem has been given by Hahn, O'Malley, and
Spruche:

L

D) [
= - P -F + |
G F ' (1.3)

P= lam>< |
¢ (1.4)
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gOo( ) is the ground state of hydrogen @ccupied by the T
particle (i = 1,2).
In the next section we shall show that the spectrum of discrete
levels of Q 'if is indeed infinite below threshold, and we shall
derive a formula for the relative spacings of fm which is

identical to that of Gailitis and Demburg’ for E,, .

ITI ANALYSIS

We start with a close-coupling wave function for the 43 state

of e-H scattering including ls-2s-2p states of hydrogen:

— Ry
V= '?LV}.{[ G0q) R (5) + V() R+ wr() I ) 36, |

(2.1)

+f12v]},

where R/n ] is r times the given radial wave function. A

straightforward application of Q on ‘w now yilelds
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G = 1 {[;7-(,,,) R )+ (r) /fl'/of/’z) con G, [+ [(=2)]

rig ¢

- C/\» [/64("’) @4(&) r (1= ]}7

(2.22a)

where

Cy
C ://?/ () Zr)dr

(2.3)

Here we note that one can add any amount of Rog to U and simml-
taneously subtract the same amount to Rig from Vv without changing V .
Thus by selecting this amount as C,,. , i.e., by redefining u and v

as given in (2.4):

awe) + G RLY (2.ka)

w(ir:)

i

() (2.4b)
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we find, without having changed 'y_/ s that

)]
WY = . {/w(r.) R, () +mr(n) R;,(f»)"‘” bt (122) -

(2.2b)
Therefore without any loss of generality we can take (2.2b) as
the general form of ()W , and we see that it has the desired
vanishing asymptotic form below the n=P threshold:
diy QW=0
r—> o< (2-5)

Q 'y is in fact the close coupling wave function with the 1ls

term absent. The equations which v and w satisfy may be simply
derived from the integro-differential equations for the scattering
in the close coupling app:roximationlO by dropping all terms depending

on u and Ryg. At large distances they reduce, for S states, to




x> (2.6a)

dr- d (2.6Db)

11
These equations may be diagonalized so that two linear combinations
of v and w satisfy two uncoupled equations. The one which contains

the attractive r = potential corresponds to

/"»/3—7:)

s Cr)
F(V): A(r) + ( A (2.7)
The diagonalized equation is
g (o) L £)Fo= o (2.8)
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In this equation Ej is the energy in rydbergs relative to

the 2s threshold. Having gotten the equation in this form, we

can appeal to an argument of Landaun and Lifshitz12 to answer
affirmatively the question of whether there are an infinite number
of bound states of F(r). For they12 have shown that any problem

governed by the potential in (2.8) for large r and well-behaved

for small r has a solution with an infinite number of nodes as
5’ —> 0 . Thus for E negative and small, one can find bound
state solutions with any arbitrary number of nodes, i.e., there
are an infinite number of bound states with & < O .

This much was also clear to Damburg and Gailitis9 as a
perusal of their paper shows. The new point thus far has been
that the elimination of the ls state from the close-coupling wave
function can be put on a more rigorous basis by a consistent
application of the Q operator. Below we shall actually evaluate
the eigenvalue spectrum of F.

Letting

e- 1,

(2.9)
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one can convince oneself that the solution of (2.8) which vanishes

at Infinity is

) ,
[(r)=/r Hlk ¢ / (2.10)
where
ST
o = v<7379-—-6749 (2.11)
()
and /—/‘ y 18 the Hankel function

H, (= Jyc2) ~i M)

Jy eandN, are the Bessel and Neumenn functions respectively.

3
For lerge values of r t

L Fije & 0 ";32 O ()

¥=—> &0 (2.12)
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For values of r < a the equations for F and a second linear
combination of v and w, call it G = v + [(1 + /37)/6]w, will be
coupled. They cannot be decoupled by any linear transformation.
However, it is certainly possible to define a non-local poten‘t:l.a,lll'L
which will describe an uncoupled F(r) down to the origin. This
non-local potential can in turn be approximated a local potential
Ve(r) at least for values of r slightly below the value of r = a
where Bq. (2.6) is valid. Now it can safely be assumed that Ve(r)
will continue to decrease (increase in magnitude) until such a point
r = b where the centrifugal barrier forces the potential up to

infinity. X.e.,

IVe(r)| > |v(a)] Z-l ;5 b<r<a.

Then for any energy satisfying

o < BL

a2 ?

the wave function F(r) will be virtually independent of ¢ for r < a.
Let the logarithmic derivative of F(r) at r = a, as obtained by integ-

ration from the origin in the presence of the actual potential, be

(2.13)

(2.14)
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defined by

(2.15)

ot
=y

r =a

To repeat, for energies satisfying (2.14), t is virtually independent
of ¢.

This logarithmic derivative must be matched to that of F(r)
for r > a in order to obtain the allowed bound states. In this
region F(r) is given by (2.10). It is shown below that as long
as we only consider energies consistent with (2.14), the small
argument expansion of the Hankel function in (2.10) may be used
in the vicinity of r = a.

15

To see this we consider the small argument expansion

H‘,(l)(z) - [e‘i"“ () (%—z)-? [0 (m-}ﬂ; - (2.16)

T(L+v) - r(1-v)

1
Putting in the imaginary values ¥ = ig and z = ig¢=r yields the



explicit expression

U b, _ 21e®Mein CARC ) - ol [1.¢<—ﬂ_—2_=-\ 1 S
Hia \lg'ry; = [TTQ sinh (1o ]—2- bl )4\/0,2+1/J ’ (2.17)

where
o =arg [T(1 + ia)] .

It is easily verified that for a given by (2.11) and for r ~ a,

(2.14) guarantees that

A
H

J—
==y

Therefore, with no further restriction we have, to within a
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proportionality constant

F(r) = Jr sin [a 1n (} e% r)-¢l, Tma, (2.18)
and
F:(La) . dFd:E‘r) . = g cot [a 1In (% e% a) - @] + %a-. . (2.19)

The allowed bound state energies may be found by equating this
to t, the value from the interii.or, and solving for e% assuming, of

course, that t is independent of €

e'lz= = -i- exp { i— [cot- (2;2-1> + @ + nnm ] } s (2.20)
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where

0 < cot XS

Iet the energy of the lowest bound state be designated by ¢31.
If ¢1 satisfies (2.14), the successively higher states are given by

the recursion relation:

e-2n/a

n+l n ’ (2.21)

as is easily seen from (2.20). Equation (2.21) is identical to

the formula for the ratio of resonant energies obtained by Gailitis
and Damburg9. This relation becomes more accurate with increasing

n, because of the decreasing dependence of t on ¢, and because of the
increasing validity of the first order expansion (2.17). We now look
at the case n = 1.

0'Malley and Geltman1 have given for the energy of the lowest

lying 's bound state:
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e1 = 0.645 ev = 0.0474 Rydbergs.

If this energy is to satisfy (2.14),the matching radius which we

choose must satisfy

a2 <« )E'-'Ll ~ 107
el ?

where all lengths are given in Bohr radii. For a =5, (2.14) is
satisfied fairly well. However, the extent to which the asymptotic
equations are valid at such a small radius is questionable. The
potentials coupling in other chamnnels could give lO% effects at

r =5 quite easily. But allowing a 10% error in the relation

(2.21) for n = 1 is not serious, since with ¢; fixed by (2.22)

one obtains

¢z = (0.037 + 0.004) e.v.

(2.22)

(2.23)
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This result corresponds to a fairly narrowly defined second

eigenvalue; namely (relative to the ground state of hydrogen) :

€2 = (10.167 + 0.004) e.v.

Furthermore, since the asymptotic form of the 2s-2p equations,
(2.6), contains no exchange terms, Eq. (2.19) must hold for triplet
as well as singlet S states (albeit with a different e¢;). For
other values of the total angular momentum one has equations similar
to (2.6) with altered numerical coefficients of the r 2 termsl5.

Only in P and D states will the diagonalization yield a net at-
tractive r 2 potential with associated coefficients o = 1.86 and 0.75

16

respectively With these changes in a, Eq. (2.19) also holds for
states of both spins.

In Table I, we summarize the numerical results for the first
three resonances for S and P states. The energies are given relative
to the ground state of hydrogen (which is appropriate for comparison
with resonant energies in the elastic scattering of electrons from
hydrogen). The S and P states of both spins are included and the
lowest state in each case has been chosen to agree with the calculated

1
results of O0'Malley and Geltman~. The second states, which in the %S

case is in accord with the original prediction of two resonances6’7,
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then provide a point of comparison with the 0'Malley-Geltman reéult.
It can be seen that our second states particularly in the 18

case are lower than the corresponding O'Malley-Geltman statbes.

The discrepancy in €, is 0.011l e.v. which, by comparison to (2.23)

is seen to be a difference of 30%. The qualitative lowering of the

levels as we have obtained is almost certainly correct. This is again

because of the tremendously long range of the r 2 potential. A

quantitative estimate of this potential can be obtained by observing

when the second term in the asymptotic expansion (2.12) becomes

comparable to the first. For any eigenfunction n, we define this

value of r by Rnl

R, = —%— (2.24)

In the %S case R; == 100 ap where we have explicitly appended the

unit of length ap (the Bohr radius). Having used a not ugusual
relative:;ave type variational wave function with up to 25 terms, it

is not surprising that O0'Malley and Geltman could get an accurate
lowest state whose range (25 ap) is not very much more than an ordinary

type bound state wave function., However, the range of the second

state (100 ag) by a conventional variational wave function below the
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n = 2 threshold at all. There can be little question that the value

itself must be too high.
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TABIE T

Autoionization levels of H (in eV above the ground of hydrogena)

State 0 'Malle:)r-Geltmza.nb This paper ¢

*s 9.559 9.259
10.178 10.1668
- 10.2016

°s 10.149 10.149
10.202 10.2006

- 10.2036

1p » 10.178 10.178
10.203 - 10.2029

— 10.2037

Sp 9.727 9.727
10.198 10.1875

T 10.2032

a Our numbers are based upon the rydberg being taken as exactly

13.605 eV.

b From reference 1l.

¢ This columm contains only the first three of the resonances

for each state of the infinity of resonances predicted by Eq. (2.19).




